

利用 Archimed 定量 PCR 进行绝对定量(标准曲线法)分析

鲲鹏基因 (北京) 科技有限责任公司

绝对定量(标准曲线法)分析

绝对定量是适合需要测定靶点实际拷贝数时采用的实时荧光定量 PCR 分析方法。要进行绝对定量,需对已知数量——浓度或拷贝数的目标模板 (标准品) 溶液进行几次连续梯度稀释,采用实时荧光定量 PCR 扩增,利用获得的数据生成标准曲线,标准曲线以各靶点的数量及相应的 Ct 值绘制。然后将未知样本的 Ct 值与此标准曲线进行比较,确定其浓度或拷贝数。

绝对定量实验常用来:

- ✓ 确定一定量的未知样本中基因的拷贝数。
- ✓ 检测病人每毫升血液中病毒颗粒的浓度或数量。
- ✓ 检测转基因食品中转基因核酸含量。

重要提示:应用标准曲线方法进行绝对定量,需具备已知浓度或数量的模板标准品,这表示 在生成曲线前,应准确定量模板。定量的准确度与标准曲线的质量直接相关。用于生成标准 曲线的模板及定量该模板采用的方法是实验的基础。连续梯度稀释时的加样准确度极为重 要,目标模板和连续稀释的实际样本的反转录 RT 和 PCR 扩增效率相当至关重要。

利用 Archimed 荧光定量 PCR 进行绝对定量分析的一般流程

为了帮助实验人员更便捷地进行绝对定量研究, Archimed 定量 PCR 系统在实验条件 设置、孔板设置及数据分析等方面均进行了充分优化, 力争以最智能化的方式帮助研究者完 成该类型实验。利用 Archimed 软件智能设置向导, 完成一个绝对定量实验只需以下简单的 6 个步骤:

 创建实验:点击启动界面右下方"创建"按钮,或者通过菜单栏选择"创建"一个新的 实验流程;随后,在"实验类型"下拉框中选择,选择"绝对定量"

 设置反应条件:实验属性设置完成后,点击页面左侧的运行条件或者右下角的"下一步", 进入运行条件设置界面

设置孔板:运行条件设置完成后,点击页面左侧孔板设置或者右下角的下一步,进入孔板设置界面。在孔板视图任意区域单击鼠标右键选择定义和设置标准品,对标准曲线进行定义,请根据具体实验需求及情况,对标准曲线的参数进行设定。根据实际反应管放置的相应孔位选择反应孔,对样本及检测项目进行相应属性设置,并勾选分配至对应孔位中,待测样品孔位将显示相应设置属性

	1 AT	v .									13	XX () III :	≡;	快速观音 商	88.5-75									
	1	2	3	4	ñ	6	7	8	9	10	- 11	12	Ľ	- 874							+ 1010	2	5cft	v
																11.6				5197			×	Com
A	3 3453	S 54724			Sec.	S area	S 0401	S 0404	S Sec.	S serve	S 14701	S 0000		🗹 🔳 U.4	e									
L,																								
в	S Set 2	S Lores	N Sett.	Long Res	Low Control	-	1.00	Long State	ine in the second	1.00	Long Street	1.0												
							_	_				_												
				i																				
с																								
p																								
																 				 		_		
													1	- 10181756							A 100	-21	150	×
														(L)((C))			527-36M		15 cr aller			45	-	
Е															н	FéM	Margar	NECLA	ICR				and the	×
																		in c						

注: Archimed 孔板设置可以在反应运行前、运行中、或运行后设置,运行中或运行后进行孔板设置可以节 省时间。

 运行实验:运行条件或孔板设置完成后,点击页面左侧实验运行或右下角的"下一步", 进入仪器运行界面

Archimed-X6	盖板温度:98.6℃	反应板温度:66.11℃	茲计剩全时间,00 公	分 20 秒	
1/40	设置反应板温度95℃		19 ET #17 # 11H . 00 J	2010	

5. 结果查看及分析:运行完成后,Archimed 软件将使用默认分析设置自动分析数据,结果分析界面中显示扩增图谱。选择标准曲线选项,即可直接查看绝定量分析结果,标准曲线X轴下方会显示,实验的目标基因、斜率、Y轴截距、R²、扩增效率%,错误信息,其中斜率在-3.2~-3.5,R>0.99或R²>0.98,扩增效率在90%~105%,扩增结果就认为是可靠的。同时,软件将以列表形式展示实验结果,包括CT、CT平均值、CTSD、目标样本数量等实验信息

	2 m	a v	分类查看	٠					
	£:10T	0.4 BR	物日名称	4500000/	宗形染料	CT	Cr 中均油	Cr SD	お来 *1
67	F7	経末1	检测 成用1	STANDA	FAM-NF	9,338	9.328	0.051	2,500.000
60	FØ	総市1	金融原日1	STANDA	FAM-NF	9,255	9,328	0.051	2,500.000
60	FD	#本1	检察项目 1	STANDA	FAM-NF	9.316	9.3.28	0.051	2,500.000
70	F10	#41	*********	STANDA	FAM-NF	9.402	9.3.28	0.051	2,500.000
63	F3	###-2	12000000	STANDA	FAM-NE	11.835	11.784	0.034	500.000
64	F4	#本 2	检测项目1	STANDA	FAM-NE	11.760	11.784	0.034	500.000
65	F5	経本 2	检测项目1	STANDA	FAM-NF	11.772	11.784	0.034	500.000
65	FØ	総本 2	检测项目1	STANDA	FAM-NE	11.770	11.784	0.034	500.000
22	810	#本3	检视项目 1	STANDA	FAM-NF	14.362	14.307	0.041	100.000
34	C10	#本3	社和 第日1	STANDA	FAM-NF	14.289	14.307	0.041	100.000
45	D10	#43	1110日1	STANDA	FAM-NF	14.266	14.307	0.041	100.000
58	E10	程本1	检测项目1	STANDA	FAM-NE	14.311	14.307	0.041	100.000
21	09	経卒4	检测项目1	STANDA	FAM-NE	16.865	16.805	0.050	20.000
33	C9	起本 4	检测项目1	STANDA	FAM-NE	16.835	16.805	0.050	20,000
45	09	起本 4	检测项目1	STANDA	FAM-NF	16.726	15.805	0.050	20.000
57	69	#本4	检察项目1	STANDA	FAM-NF	16.798	15.805	0.050	20.000
20	88	#4.5	11815日1	STANDA.	FAM-NF.,	19,540	19.225	0.035	4,000
32	ca	##4-5	*******	STANDA.,	EAM-NE.	19.173	19.226	0.085	4,000
44	DB	把本 5	\$2350H1	STANDA.,	EAM-NE.	19.151	19.226	0.085	4.000
58	0	銀本5	40,003,0001	STANDA.	EAM-NE.	19.238	19.226	0.015	4,000
19	87	起本 6	40,800 FF 1	STANDA.	EAM-NE.	21,734	21,735	0.017	0.800
21	C7	総本も	46.815F1	STANDA.	FAM-NF.,	21,740	21,735	0.017	0.800
43	07	#本6	44816B1	STANDA	FAM-NF-	21.725	21.735	0.017	0.800
55	F7	#5.6	******	STANDA	FAMINE	21.740	21.735	0.017	0.800
18	P6	### 7	***Inc1	STANDA	FAMINE	26 303	24.159	0.159	0.160
30	08	127.7	20-10125-021	STANDA	FAM NF	26.247	24 159	0.159	0.160
-		0.00	ACRESSES 1	CTANDA	CAM NE	22.042	24,150	0.159	0.100
42	06	秋平 /	#28040H1	STANDA	EPM-NE.	23.943	29,159	0.159	0.160

导出结果: 单击"导出"按钮,结果会显示在一个打开的 Excel 中,表格中包含孔板设置、扩增数据、多组分数据、结果等 sheet;用于数据分析的 Ct 值、数量(浓度)相关参数等信息会在结果表格中展示

应用实例分享 (一) ——利用 Archimed 进行绝对定量 (标准曲线法) 分析 HBV 病毒核酸浓度

下面我们将以一个实验为例,展示如何利用 Archimed 定量 PCR 系统来完成绝对定量 分析。该实验以 *达安基因 HBV 病毒检测试剂盒* 作为实验材料,将阳性定量参考品进行梯 度稀释建立标准曲线,并对阴性质控品、HBV 强阳性质控品、HBV 临界阳性质控品进行绝 对定量分析。

材料和方法:

试剂和耗材:

- 样本: 4 个梯度稀释的阳性定量参考品、阴性质控品、HBV 强阳性质控品、HBV 临界 阳性质控品
- 试剂:达安基因 HBV 试剂盒
- 耗材: Bio-Rad 8 联管

仪器:

- 品牌: Rocgene (鲲鹏基因)
- 型号: Archimed X6 实时荧光定量 PCR 仪

反应体系:

- PCR 反应液 27 ul
- Taq 酶 3 ul
- 模板 20 ul
- Total 50 ul

反应程序:

实验结果

根据实验结果分析,利用梯度稀释后的 HBV 病毒核酸阳性标准品成功构建了标准曲线。 得到的扩增效率和 R²正常,阴性、强阳性和临界阳性都得到明显的区分和定量。

扩增曲线和绝对定量结果:

基因: 检测项目1 <u>斜率</u>: -3.281 <u>Y 轴截距</u>: 31.632 R²: 0.998 <u>扩增效率%</u>: 101.724 <u>错误</u>: 0.096

应用实例分享(二)——利用 Archimed 进行绝对定量(标准曲线法)分析仪 器的线性动态范围

下面我们将以一个实验为例,展示如何利用 Archimed 定量 PCR 系统来完成绝对定量分析。该实验以质粒 DNA 作为实验材料,对 DNA 模板进行倍数梯度稀释,建立标准曲线,通过绝对定量方法评估 Archimed 的线性动态范围。

材料和方法:

试剂和耗材:

- 样本:已知浓度的质粒 DNA 进行 5 倍连续稀释 10 个梯度
- 试剂: 天根 Taqman 试剂
- 耗材: Bio-Rad 八联管

仪器:

- 品牌: Rocgene (鲲鹏基因)
- 型号: Archimed X6 实时荧光定量 PCR 仪

反应体系:

- MIX 10ul
- FAM 探针 0.5 ul
- 引物 F 0.5ul
- 引物 R 0.5ul
- 模板 3ul
- ●水 5.5ul
- Total
 20ul

反应程序:

实验结果

根据实验结果分析,利用已知起始浓度的质粒 DNA 的样本梯度稀释,成功构建了标准曲线并进行了绝对定量;在标准曲线上,不同稀释倍数的模板弄的得到了准确定量和区分。 表明线性范围较好。

扩增曲线结果:

绝对定量标准曲线结果:

讨论

- 利用 Archimed 荧光定量 PCR 仪可以快速便捷地开展绝对定量的相关检测和研究。
 Archimed 软件在孔板设置中为操作者提供了十分简便的标准品默认设置;通过上述实验案例,可以看出 Archimed 能够准确快速地对待测样品进行绝对定量分析,结果和数据分析内容丰富,全面;
- 在实验样本及实验操作无较大隐患的基础上,Archimed 荧光定量 PCR 仪具有极佳的
 线性动态范围,能够确保实验分析的灵敏度和准确性。

关于 Archimed 荧光定量 PCR 系统

Archimed 荧光定量 PCR 是鲲鹏基因为满足中高端用户的切实需求而匠心打造的全球 首款时间分辨实时荧光定量 PCR 系统。基于菲涅尔透镜的新型光信号采集技术、专利的时 间分辨信号分离技术及独特的控温技术,使 Archimed 系列产品在检测灵敏度、多色串扰、 温度均一性及准确性等方面达到国际先进水平。同时,基于全球视野的产品设计理念及制造 工艺,赋予 Archimed 国际水准的优异品质。Archimed 将秉承中国智造、追求卓越的工匠 精神,携手中国用户成就未来。

鲲鹏基因(北京)科技有限责任公司

- 地址:北京市昌平区龙域北街 10 号创集合产业园 429 室
- 电话: 010-59724295
- 邮编: 102208
- 网址: www.rogene.com

